184 research outputs found

    Proton decay in flux compactifications

    Full text link
    We study proton decay in a six-dimensional orbifold GUT model with gauge group SO(10)×U(1)ASO(10)\times U(1)_A. Magnetic U(1)AU(1)_A flux in the compact dimensions determines the multiplicity of quark-lepton generations, and it also breaks supersymmetry by giving universal GUT scale masses to scalar quarks and leptons. The model can successfully account for quark and lepton masses and mixings. Our analysis of proton decay leads to the conclusion that the proton lifetime must be close to the current experimental lower bound. Moreover, we find that the branching ratios for the decay channels pe+π0p \rightarrow e^+\pi^0 and pμ+π0p\rightarrow \mu^+\pi^0 are of similar size, in fact the latter one can even be dominant. This is due to flavour non-diagonal couplings of heavy vector bosons together with large off-diagonal Higgs couplings, which appears to be a generic feature of flux compactifications.Comment: 26 pages, 3 figures, 2 table

    Discrete symmetries for electroweak natural type-I seesaw mechanism

    Full text link
    The naturalness of electroweak scale in the models of type-I seesaw mechanism with O(1){\cal O}(1) Yukawa couplings requires TeV scale masses for the fermion singlets. In this case, the tiny neutrino masses have to arise from the cancellations within the seesaw formula which are arranged by fine-tuned correlations between the Yukawa couplings and the masses of fermion singlets. We motivate such correlations through the framework of discrete symmetries. In the case of three Majorana fermion singlets, it is shown that the exact cancellation arranged by the discrete symmetries in seesaw formula necessarily leads to two mass degenerate fermion singlets. The remaining fermion singlet decouples completely from the standard model. We provide two candidate models based on the groups A4A_4 and Σ(81)\Sigma(81) and discuss the generic perturbations to this approach which can lead to the viable neutrino masses.Comment: 26 pages, 4 figures; references added, matches published versio

    Flavour physics without flavour symmetries

    Full text link
    We quantitatively analyze a quark-lepton flavour model derived from a six-dimensional supersymmetric theory with SO(10)×U(1)SO(10)\times U(1) gauge symmetry, compactified on an orbifold with magnetic flux. Two bulk 16\mathbf{16}-plets charged under the U(1)U(1) provide the three quark-lepton generations whereas two uncharged 10\mathbf{10}-plets yield two Higgs doublets. At the orbifold fixed points mass matrices are generated with rank one or two. Moreover, the zero modes mix with heavy vectorlike split multiplets. The model possesses no flavour symmetries. Nevertheless, there exist a number of relations between Yukawa couplings, remnants of the underlying GUT symmetry and the wave function profiles of the zero modes, which lead to a prediction of the light neutrino mass scale, mν1103m_{\nu_1} \sim 10^{-3} eV and heavy Majorana neutrino masses in the range from 101210^{12} GeV to 101410^{14} GeV. The model successfully includes thermal leptogenesis.Comment: Minor additions; Published versio

    Interpreting 750 GeV diphoton excess in SU(5) grand unified theory

    Get PDF
    The ATLAS and CMS experiments at the LHC have found significant excess in the diphoton invariant mass distribution near 750 GeV. We interpret this excess in a predictive nonsupersymmetric SU(5) grand unified framework with a singlet scalar and light adjoint fermions. The 750 GeV resonance is identified as a gauge singlet scalar. Both its production and decays are induced by 24 dimensional adjoint fermions predicted within SU(5). The adjoint fermions are assumed to be odd under Z2Z_2 symmetry which forbids their direct coupling to the standard model fermions. We show that the observed diphoton excess can be explained with sub-TeV adjoint fermions and with perturbative Yukawa coupling. A narrow width scenario is more preferred while a simultaneous explanation of observed cross section and large total decay width requires some of the adjoint fermions lighter than 375 GeV. The model also provides a singlet fermion as a candidate of cold dark matter. The gauge coupling unification is achieved in the framework by introducing color sextet scalars while being consistent with the proton decay constraint.Comment: Discussion added, conclusion unchanged; Matches published version in Physics Letters

    Revisiting lepton flavor violation in supersymmetric type II seesaw

    Full text link
    In view of the recent measurement of reactor mixing angle θ13\theta_{13} and updated limit on BR(μeγ)BR(\mu \to e \gamma) by the MEG experiment, we re-examine the charged lepton flavor violations in a framework of supersymmetric type II seesaw mechanism. Supersymmetric type II seesaw predicts strong correlation between BR(μeγ)BR(\mu \to e \gamma) and BR(τμγ)BR(\tau \to \mu \gamma) mainly in terms of the neutrino mixing angles. We show that such a correlation can be determined accurately after the measurement of θ13\theta_{13}. We compute different factors which can affect this correlation and show that the mSUGRA-like scenarios, in which slepton masses are taken to be universal at the high scale, predicts 3.5BR(τμγ)/BR(μeγ)303.5 \lesssim BR(\tau \to \mu \gamma)/BR(\mu \to e \gamma) \lesssim 30 for normal hierarchical neutrino masses. Any experimental indication of deviation from this prediction would rule out the minimal models of supersymmetric type II seesaw. We show that the current MEG limit puts severe constraints on the light sparticle spectrum in mSUGRA model if the seesaw scale lies within 101310^{13}-101510^{15} GeV. It is shown that these constraints can be relaxed and relatively light sparticle spectrum can be obtained in a class of models in which the soft mass of triplet scalar is taken to be non-universal at the high scale.Comment: Minor changes in text; accepted for publication in Phys. Rev.

    Generalized μ\mu-τ\tau symmetry and discrete subgroups of O(3)

    Get PDF
    The generalized μ\mu-τ\tau interchange symmetry in the leptonic mixing matrix UU corresponds to the relations: Uμi=Uτi|U_{\mu i}|=|U_{\tau i}| with i=1,2,3i=1,2,3. It predicts maximal atmospheric mixing and maximal Dirac CP violation given θ130\theta_{13} \neq 0. We show that the generalized μ\mu-τ\tau symmetry can arise if the charged lepton and neutrino mass matrices are invariant under specific residual symmetries contained in the finite discrete subgroups of O(3)O(3). The groups A4A_4, S4S_4 and A5A_5 are the only such groups which can entirely fix UU at the leading order. The neutrinos can be (a) non-degenerate or (b) partially degenerate depending on the choice of their residual symmetries. One obtains either vanishing or very large θ13\theta_{13} in case of (a) while only A5A_5 can provide θ13\theta_{13} close to its experimental value in the case (b). We provide an explicit model based on A5A_5 and discuss a class of perturbations which can generate fully realistic neutrino masses and mixing maintaining the generalized μ\mu-τ\tau symmetry in UU. Our approach provides generalization of some of the ideas proposed earlier in order to obtain the predictions, θ23=π/4\theta_{23}=\pi/4 and δCP=±π/2\delta_{\rm CP} = \pm \pi/2.Comment: 18 page

    Fermion Masses in SO(10) Models

    Full text link
    We examine many SO(10) models for their viability or otherwise in explaining all the fermion masses and mixing angles. This study is carried out for both supersymmetric and non-supersymmetric models and with minimal (10+126ˉ10+\bar{126}) and non-minimal (10+126ˉ+12010+\bar{126}+120) Higgs content. Extensive numerical fits to fermion masses and mixing are carried out in each case assuming dominance of type-II or type-I seesaw mechanism. Required scale of the B-L breaking is identified in each case. In supersymmetric case, several sets of data at the GUT scale with or without inclusion of finite supersymmetric corrections are used. All models studied provide quite good fits if the type-I seesaw mechanism dominates while many fail if the type-II seesaw dominates. This can be traced to the absence of the bb-τ\tau unification at the GUT scale in these models. The minimal non-supersymmetric model with type-I seesaw dominance gives excellent fits. In the presence of a 45H45_H and an intermediate scale, the model can also account for the gauge coupling unification making it potentially interesting model for the complete unification. Structure of the Yukawa coupling matrices obtained numerically in this specific case is shown to follow from a very simple U(1) symmetry and a Froggatt-Nielsen singlet.Comment: 31 pages, 9 Tables, 4 figure

    Pseudo-Dirac neutrinos from flavour dependent CP symmetry

    Full text link
    Discrete residual symmetries and flavour dependent CP symmetries consistent with them have been used to constrain neutrino mixing angles and CP violating phases. We discuss here role of such CP symmetries in obtaining a pseudo-Dirac neutrino which can provide a pair of neutrinos responsible for the solar splitting. It is shown that if (a) 3×33\times 3 Majorana neutrino matrix MνM_\nu is invariant under a discrete Z2×Z2Z_2\times Z_2 symmetry generated by S1,2S_{1,2}, (b) CP symmetry XX transform MνM_\nu as XTMνX=MνX^T M_\nu X=M_\nu^*, and (c) XX and S1,2S_{1,2} obey consistency conditions XS1,2X=S2,1X S_{1,2}^* X^\dagger=S_{2,1}, then two of the neutrino masses are degenerate independent of specific forms of XX, S1S_1 and S2S_2. Explicit examples of this result are discussed in the context of Δ(6n2)\Delta(6 n^2) groups which can also be used to constrain neutrino mixing matrix UU. Degeneracy in two of the masses does not allow complete determination of UU but it can also be fixed once the perturbations are introduced. We consider explicit perturbations which break Z2×Z2Z_2\times Z_2 symmetries but respect CP. These are shown to remove the degeneracy and provide a predictive description of neutrino spectrum. In particular, a correlation sin2θ23sinδCP=±Im[p]\sin 2\theta_{23}\sin\delta_{CP}=\pm {\rm Im}[p] is obtained between the atmospheric mixing angle θ23\theta_{23} and the CP violating phase δCP\delta_{CP} in terms of a group theoretically determined phase factor pp. Experimentally interesting case θ23=π4\theta_{23}=\frac{\pi}{4}, δCP=±π2\delta_{CP}=\pm \frac{\pi}{2} emerges for groups which predict purely imaginary pp. We present detailed predictions of the allowed ranges of neutrino mixing angles, phases and the lightest neutrino mass for three of the lowest Δ(6n2)\Delta(6 n^2) groups with n=2,4,6n=2,4,6.Comment: 17 pages, 4 figures; Minor modification, published versio
    corecore